The complexity of embeddability between groups

Filippo Calderoni

Politecnico di Torino
Università di Torino

joint work with Luca Motto Ros
$31^{\text {st }}$ January 2016

Borel reducibility

In the framework of Borel reducibility, relations are defined over Polish or standard Borel spaces.

Definition

Let E and F be binary relations over X and Y, respectively.

- E Borel reduces to F (or $E \leq_{B} F$) if and only if there is a Borel $f: X \rightarrow Y$ such that

$$
x_{1} E x_{2} \Leftrightarrow f\left(x_{1}\right) F f\left(x_{2}\right) .
$$

- E and F are Borel bi-reducible (or $E \sim_{B} F$) if and only if $E \leq_{B} F$ and $F \leq_{B} E$.

Compare equivalence relations

The ordering \leq_{B} can be used to compare equivalence relations.

Examples

(Gromov) the isometry between compact Polish metric spaces Borel reduces to $=_{\mathbb{R}}$.
(Stone) the homeomorphism between compact
zero-dimensional Hausdorff spaces Borel reduces to
the isomorphism between Boolean algebras.

Compare equivalence relations

The ordering \leq_{B} can be used to compare equivalence relations.

Examples

(Gromov) the isometry between compact Polish metric spaces Borel reduces to $=_{\mathbb{R}}$.
(Stone) the homeomorphism between compact zero-dimensional Hausdorff spaces Borel reduces to the isomorphism between Boolean algebras.

Analytic relations

Definition

A relation E defined on X is $\boldsymbol{\Sigma}_{1}^{1}$ (or analytic) if it is analytic as a subset of $X \times X$.

Examples

Analytic relations

Definition

A relation E defined on X is $\boldsymbol{\Sigma}_{1}^{1}$ (or analytic) if it is analytic as a subset of $X \times X$.

Examples

- Fix \mathcal{L} a countable relational language. Any countable \mathcal{L}-structure is viewed as an element of $X_{\mathcal{L}}=\prod_{R \in \mathcal{L}} 2^{\mathbb{N}^{(}(R)}$

$$
M \sqsubseteq_{\mathcal{L}} N \quad \stackrel{\text { def }}{\Longleftrightarrow} \quad \exists h: M \longrightarrow N \quad \text { embedding. }
$$

- If X is a Polish space and G is a Polish group such that $a: G \curvearrowright X$ is a Borel action,

Analytic relations

Definition

A relation E defined on X is $\boldsymbol{\Sigma}_{1}^{1}$ (or analytic) if it is analytic as a subset of $X \times X$.

Examples

- Fix \mathcal{L} a countable relational language. Any countable \mathcal{L}-structure is viewed as an element of $X_{\mathcal{L}}=\prod_{R \in \mathcal{L}} 2^{\mathbb{N}^{(}(R)}$

$$
M \sqsubseteq_{\mathcal{L}} N \quad \stackrel{\text { def }}{\Longleftrightarrow} \quad \exists h: M \longrightarrow N \quad \text { embedding. }
$$

- If X is a Polish space and G is a Polish group such that $a: G \curvearrowright X$ is a Borel action,
$x E_{G}^{X} y \stackrel{\text { def }}{\Longleftrightarrow} \exists g$ such that $a(g, x)=y$.

$\boldsymbol{\Sigma}_{1}^{1}$ completeness

Definition

An equivalence relation E is $\boldsymbol{\Sigma}_{1}^{1}$-complete if and only if $F \leq_{B} E$, for every $\boldsymbol{\Sigma}_{1}^{1}$ equivalence relation F.

Definition

A quasi-order Q is $\boldsymbol{\Sigma}_{1}^{1}$-complete if and only if $P \leq_{B} Q$, for every $\boldsymbol{\Sigma}_{1}^{1}$ quasi-order P.

Example

$\boldsymbol{\Sigma}_{1}^{1}$ completeness

Definition

An equivalence relation E is $\boldsymbol{\Sigma}_{1}^{1}$-complete if and only if $F \leq_{B} E$, for every $\boldsymbol{\Sigma}_{1}^{1}$ equivalence relation F.

Definition

A quasi-order Q is $\boldsymbol{\Sigma}_{1}^{1}$-complete if and only if $P \leq_{B} Q$, for every $\boldsymbol{\Sigma}_{1}^{1}$ quasi-order P.

Example

- isometry between separable Banach spaces, (Ferenczi-Louveau-Rosendal 2009)
- $\cong_{\mathscr{F}}$ the topological isomorphism between Polish groups. (Ferenczi-Louveau-Rosendal 2009)

$\boldsymbol{\Sigma}_{1}^{1}$ completeness

Definition

An equivalence relation E is $\boldsymbol{\Sigma}_{1}^{1}$-complete if and only if $F \leq_{B} E$, for every $\boldsymbol{\Sigma}_{1}^{1}$ equivalence relation F.

Definition

A quasi-order Q is $\boldsymbol{\Sigma}_{1}^{1}$-complete if and only if $P \leq_{B} Q$, for every $\boldsymbol{\Sigma}_{1}^{1}$ quasi-order P.

Example

- isometry between separable Banach spaces, (Ferenczi-Louveau-Rosendal 2009)
- $\cong_{\mathfrak{G}}$ the topological isomorphism between Polish groups.
(Ferenczi-Louveau-Rosendal 2009)

$\boldsymbol{\Sigma}_{1}^{1}$-complete quasi-orders

Examples

- $\sqsubseteq \mathrm{Gr}$ the embeddability on countable graphs, (Louveau-Rosendal 2005)
- \square^{C} the continuous embeddability on compact metrizable spaces,
(Louveau-Rosendal 2005)
- \sqsubseteq^{i} the isometric embeddability on separable Banach spaces, (Ferenczi-Louveau-Rosendal 2009)
- $\square_{\text {s }}$ the tonological embeddability on Polish groups, (Ferenczi-Louveau-Rosendal 2009)
- $\sqsubseteq G p$ the embeddability on countable groups. (Williams 2014)

$\boldsymbol{\Sigma}_{1}^{1}$-complete quasi-orders

Examples

- $\sqsubseteq \mathrm{Gr}$ the embeddability on countable graphs, (Louveau-Rosendal 2005)
- \sqsubseteq^{C} the continuous embeddability on compact metrizable spaces,
(Louveau-Rosendal 2005)
- \square^{i} the isometric embeddability on separable Banach spaces, (Ferenczi-Louveau-Rosendal 2009)
- ■o the topological embeddability on Polish groups, (Ferenczi-Louveau-Rosendal 2009)
- $\sqsubseteq G p$ the embeddability on countable groups. (Williams 2014)

$\boldsymbol{\Sigma}_{1}^{1}$-complete quasi-orders

Examples

- $\sqsubseteq \mathrm{Gr}$ the embeddability on countable graphs, (Louveau-Rosendal 2005)
- \sqsubseteq^{C} the continuous embeddability on compact metrizable spaces,
(Louveau-Rosendal 2005)
- \sqsubseteq^{i} the isometric embeddability on separable Banach spaces, (Ferenczi-Louveau-Rosendal 2009)
- $\sqsubseteq_{\mathfrak{G}}$ the topological embeddability on Polish groups, (Ferenczi-Louveau-Rosendal 2009)
- $\sqsubseteq_{\mathrm{Gp}}$ the embeddability on countable groups. (Williams 2014)

$\boldsymbol{\Sigma}_{1}^{1}$-complete quasi-orders

Examples

- $\sqsubseteq \mathrm{Gr}$ the embeddability on countable graphs, (Louveau-Rosendal 2005)
- \sqsubseteq^{C} the continuous embeddability on compact metrizable spaces,
(Louveau-Rosendal 2005)
- \sqsubseteq^{i} the isometric embeddability on separable Banach spaces, (Ferenczi-Louveau-Rosendal 2009)
- $\sqsubseteq_{\mathfrak{G}}$ the topological embeddability on Polish groups, (Ferenczi-Louveau-Rosendal 2009)
- $\begin{gathered}\text { (Wp } \\ \text { (Williams 2014) }\end{gathered}$

$\boldsymbol{\Sigma}_{1}^{1}$-complete quasi-orders

Examples

- $\sqsubseteq \mathrm{Gr}$ the embeddability on countable graphs, (Louveau-Rosendal 2005)
- \sqsubseteq^{C} the continuous embeddability on compact metrizable spaces,
(Louveau-Rosendal 2005)
- \sqsubseteq^{i} the isometric embeddability on separable Banach spaces, (Ferenczi-Louveau-Rosendal 2009)
- $\sqsubseteq_{\mathfrak{G}}$ the topological embeddability on Polish groups, (Ferenczi-Louveau-Rosendal 2009)
- $\sqsubseteq \mathrm{Gp}$ the embeddability on countable groups.
(Williams 2014)

Invariant Universality

Definition

Let S be a $\boldsymbol{\Sigma}_{1}^{1}$ quasi-order and E a $\boldsymbol{\Sigma}_{1}^{1}$ equivalence subrelation of S. We say that the pair (S, E) is invariantly universal (or universal) if for every $\boldsymbol{\Sigma}_{1}^{1}$ quasi-order R there is a Borel $B \subseteq \operatorname{dom}(S)$ such that:

- B is invariant respect to E,
- $S \upharpoonright B \sim_{B} R$.

$$
(Q, E) \text { invariantly universal } \Rightarrow Q \text { è } \boldsymbol{\Sigma}_{1}^{1} \text {-complete. }
$$

Invariant Universality

Definition

Let S be a $\boldsymbol{\Sigma}_{1}^{1}$ quasi-order and E a $\boldsymbol{\Sigma}_{1}^{1}$ equivalence subrelation of S. We say that the pair (S, E) is invariantly universal (or universal) if for every $\boldsymbol{\Sigma}_{1}^{1}$ quasi-order R there is a Borel $B \subseteq \operatorname{dom}(S)$ such that:

- B is invariant respect to E,
- $S \upharpoonright B \sim_{B} R$.

$$
\begin{aligned}
(Q, E) \text { invariantly universal } & \Rightarrow Q \text { è } \boldsymbol{\Sigma}_{1}^{1} \text {-complete. } \\
& \nLeftarrow
\end{aligned}
$$

Embeddability of countable groups

Theorem (Williams 2014)
$\sqsubseteq_{\mathrm{Gp}}$ is $\boldsymbol{\Sigma}_{1}^{1}$-complete.

Theorem (C.-Motto Ros)
$\sqsubseteq_{\mathrm{Gp}}$ is invariantly universal.

The only known technique

There exists a Borel $\mathbb{G} \subseteq X_{G r}$ such that $\sqsubseteq_{G r} \upharpoonright \mathbb{G}$ is $\boldsymbol{\Sigma}_{1}^{1}$-complete and over \mathbb{G} equality and isomorphism coincide.

Theorem (Camerlo-Marcone-Motto Ros 2013)

Let S be a $\boldsymbol{\Sigma}_{1}^{1}$ quasi-order on X and $E \subseteq S$ a $\boldsymbol{\Sigma}_{1}^{1}$ equivalence relation. Assume that there is a Borel $f: \mathbb{G} \rightarrow X$ such that:

- $\sqsubseteq_{\mathbb{G}} \leq_{B} S$ via f,
- $=_{\mathbb{G}} \leq_{B} E$ via f,

The only known technique

There exists a Borel $\mathbb{G} \subseteq X_{G r}$ such that $\sqsubseteq_{G r} \upharpoonright \mathbb{G}$ is $\boldsymbol{\Sigma}_{1}^{1}$-complete and over \mathbb{G} equality and isomorphism coincide.

Theorem (Camerlo-Marcone-Motto Ros 2013)

Let S be a $\boldsymbol{\Sigma}_{1}^{1}$ quasi-order on X and $E \subseteq S$ a $\boldsymbol{\Sigma}_{1}^{1}$ equivalence relation. Assume that there is a Borel $f: \mathbb{G} \rightarrow X$ such that:

- $\sqsubseteq_{\mathbb{G}} \leq_{B} S$ via f,
- $=_{G} \leq_{B} E$ via f,
- there exists a standard Borel space Y and a Borel reduction g of E to E_{H}^{Y}, for some Polish group $H \curvearrowright Y$, such that

$$
\Sigma: \mathbb{G} \longrightarrow F(H)
$$

$$
T \longmapsto\{h \in H: h \cdot(g \circ f(T))=g \circ f(T)\} \quad \text { is Borel. }
$$

Then, (S, E) is invariantly universal.

Embeddability between countable groups

Proof (sketch)
J. Williams defined a Borel function

$$
\begin{aligned}
X_{G r} & \longrightarrow X_{G_{p}} \\
T & \longmapsto G_{T} .
\end{aligned}
$$

Every G_{T} satisfies some small cancellation properties, which are used to prove that f is a reduction for both

- $\sqsubseteq_{G} \leq \coprod_{G p}$,
- $=\mathbb{G}_{\mathbb{G}} \leq_{B} \cong_{G p}$.

Embeddability between countable groups

Let S_{∞} be the Polish group of all permutations of \mathbb{N}.
$S_{\infty} \curvearrowright X_{G p}$ is continuous and $\cong_{G p}$ coincides with $E_{S_{\infty}}^{X_{G p}}$
 $=\left\{h \in S_{\infty}: h \in \operatorname{Aut}\left(G_{T}\right)\right\}$
One can prove that $\Sigma: \mathbb{G} \rightarrow F\left(S_{\infty}\right)$ is Borel.

Embeddability between countable groups

Let S_{∞} be the Polish group of all permutations of \mathbb{N}.
$S_{\infty} \curvearrowright X_{G p}$ is continuous and $\cong_{G p}$ coincides with $E_{S_{\infty}}^{X_{G p}}$.

$$
=\left\{h \in S_{\infty}: h \in \operatorname{Aut}\left(G_{T}\right)\right\}
$$

One can prove that $\Sigma: \mathbb{G} \rightarrow F\left(S_{\infty}\right)$ is Borel.

Embeddability between countable groups

Let S_{∞} be the Polish group of all permutations of \mathbb{N}.
$S_{\infty} \curvearrowright X_{\mathrm{Gp}}$ is continuous and \cong_{Gp} coincides with $E_{S_{\infty}}^{X_{\mathrm{Gp}}}$.

$$
\begin{aligned}
\Sigma(T) & =\left\{h \in S_{\infty}: j_{G p}(h, i d \circ f(T))=\operatorname{id} \circ f(T)\right\}= \\
& =\left\{h \in S_{\infty}: h \in \operatorname{Aut}\left(G_{T}\right)\right\}
\end{aligned}
$$

One can prove that $\Sigma: \mathbb{G} \rightarrow F\left(S_{\infty}\right)$ is Borel.

Embeddability between Polish groups

Theorem (Ferenczi-Louveau-Rosendal 2009)
$\sqsubseteq_{\mathfrak{G}}$ is $\boldsymbol{\Sigma}_{1}^{1}$-complete.

Theorem (C.-Motto Ros)
 $\sqsubseteq_{\mathfrak{G}}$ is invariantly universal.

By Uspenskij, every Polish group is homeomorphic to a closed subgroup of $\operatorname{Hom}\left([0,1]^{\mathbb{N}}\right)$.
Let $\mathfrak{G}:=F\left(\operatorname{Hom}\left([0,1]^{\mathbb{N}}\right)\right)$ with the Effros Borel structure.

Embeddability between Polish groups

Theorem (Ferenczi-Louveau-Rosendal 2009)
$\sqsubseteq_{\mathfrak{G}}$ is $\boldsymbol{\Sigma}_{1}^{1}$-complete.

Theorem (C.-Motto Ros)
 $\sqsubseteq_{\mathfrak{G}}$ is invariantly universal.

By Uspenskij, every Polish group is homeomorphic to a closed subgroup of $\operatorname{Hom}\left([0,1]^{\mathbb{N}}\right)$.
Let $\mathfrak{G}:=F\left(\operatorname{Hom}\left([0,1]^{\mathbb{N}}\right)\right)$ with the Effros Borel structure.

Embeddability between Polish groups

Theorem (Ferenczi-Louveau-Rosendal 2009)

$\sqsubseteq_{\mathfrak{G}}$ is $\boldsymbol{\Sigma}_{1}^{1}$-complete.

Theorem (C.-Motto Ros)

$\sqsubseteq_{\mathfrak{G}}$ is invariantly universal.
By Uspenskij, every Polish group is homeomorphic to a closed subgroup of $\operatorname{Hom}\left([0,1]^{\mathbb{N}}\right)$.
Let $\mathfrak{G}:=F\left(\operatorname{Hom}\left([0,1]^{\mathbb{N}}\right)\right)$ with the Effros Borel structure.
Proof (sketch)
By J. Williams, there exists a Borel function

$$
\begin{aligned}
X_{G r} & \longrightarrow X_{G p} \\
T & \longmapsto G_{T}
\end{aligned}
$$

witnessing $\sqsubseteq_{G r} \leq_{B} \sqsubseteq_{G p}$.

Embeddability between Polish groups

$T \longmapsto\left(G_{T}, \mathcal{P}\left(G_{T}\right)\right) \leadsto \operatorname{code}$ of $\left(G_{T}, \mathcal{P}\left(G_{T}\right)\right)$ in \mathfrak{G}

However, $\operatorname{ran} f \subseteq D=\{F \in \mathfrak{G}: F$ is a discrete group $\}$
Lemma
D is Π_{1}^{1}-complete.

Embeddability between Polish groups

$$
T \longmapsto\left(G_{T}, \mathcal{P}\left(G_{T}\right)\right) \leadsto \text { code of }\left(G_{T}, \mathcal{P}\left(G_{T}\right)\right) \text { in } \mathfrak{G}
$$

A.
It is NOT possible to reduce $\cong_{\mathfrak{G}}$ to any Borel group action because $\cong_{\mathfrak{F}}$ is $\boldsymbol{\Sigma}_{1}^{1}$-complete.

However, $\operatorname{ran} f \subseteq D=\{F \in \mathscr{G}: F$ is a discrete group $\}$

Lemma

Embeddability between Polish groups

However, $\operatorname{ran} f \subseteq D=\{F \in \mathfrak{G}: F$ is a discrete group $\}$.

Lemma

D is Π_{1}^{1}-complete.

Embeddability between Polish groups

$\mathfrak{G} \backslash D$ is $\boldsymbol{\Sigma}_{1}^{1}$.
Let A be the $\cong_{\mathfrak{G}}$-saturation of $\operatorname{ran} f$. That is,

$$
A:=\left\{F \in \mathfrak{G}: \exists T \in \mathbb{G}\left(F \cong_{\mathfrak{H}} f(T)\right)\right\} .
$$

A is $\boldsymbol{\Sigma}_{1}^{1}$. By the separation theorem for $\boldsymbol{\Sigma}_{1}^{1}$ equivalence relations, there is a Borel and $\cong_{\mathfrak{G}}$-invariant $B \subseteq \mathfrak{G}$ such that

$$
B \supseteq A \quad \text { and } \quad B \cap(\mathfrak{G} \backslash D)=\varnothing .
$$

Embeddability between Polish groups

$\mathfrak{G} \backslash D$ is $\boldsymbol{\Sigma}_{1}^{1}$.
Let A be the $\cong_{\mathfrak{G}}$-saturation of $\operatorname{ran} f$. That is,

$$
A:=\left\{F \in \mathfrak{G}: \exists T \in \mathbb{G}\left(F \cong_{\mathfrak{G}} f(T)\right)\right\} .
$$

A is $\boldsymbol{\Sigma}_{1}^{1}$. By the separation theorem for $\boldsymbol{\Sigma}_{1}^{1}$ equivalence rela-
tions, there is a Borel and $\cong_{\mathfrak{G}}$-invariant $B \subseteq \mathscr{G}$ such that

Embeddability between Polish groups

$\mathfrak{G} \backslash D$ is $\boldsymbol{\Sigma}_{1}^{1}$.

$$
A:=\left\{F \in \mathfrak{G}: \exists T \in \mathbb{G}\left(F \cong_{\mathfrak{G}} f(T)\right)\right\} .
$$

A is $\boldsymbol{\Sigma}_{1}^{1}$. By the separation theorem for $\boldsymbol{\Sigma}_{1}^{1}$ equivalence relations, there is a Borel and $\cong_{\mathfrak{G}}$-invariant $B \subseteq \mathfrak{G}$ such that

$$
B \supseteq A \quad \text { and } \quad B \cap(\mathfrak{G} \backslash D)=\varnothing .
$$

Embeddability of Polish groups

Every group in $B \subseteq D$ is a discrete Polish group, then we define a Borel $g: B \rightarrow X_{G p}$ such that $g(f(T)) \cong G_{T}$.

One can prove that he map

is Borel.

Embeddability of Polish groups

Every group in $B \subseteq D$ is a discrete Polish group, then we define a Borel $g: B \rightarrow X_{\mathrm{Gp}}$ such that $g(f(T)) \cong G_{T}$.
One can prove that he map

$$
\begin{aligned}
\Sigma: \mathbb{G} \longrightarrow F\left(S_{\infty}\right) \\
T \longmapsto\left\{h \in S_{\infty}: j_{G p}(h, g \circ f(T))=g \circ f(T)\right\}
\end{aligned}
$$

is Borel.

Thank you!
1110

