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Borel reducibility

In the framework of Borel reducibility, relations are defined over
Polish or standard Borel spaces.

Definition

Let E and F be binary relations over X and Y , respectively.

E Borel reduces to F (or E ≤B F ) if and only if there is a
Borel f : X → Y such that

x1 E x2 ⇔ f (x1) F f (x2).

E and F are Borel bi-reducible (or E ∼B F ) if and only if
E ≤B F and F ≤B E .
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Compare equivalence relations

The ordering ≤B can be used to compare equivalence relations.

Examples

(Gromov) the isometry between compact Polish metric spaces
Borel reduces to =R.

(Stone) the homeomorphism between compact
zero-dimensional Hausdorff spaces Borel reduces to
the isomorphism between Boolean algebras.
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Analytic relations

Definition

A relation E defined on X is Σ1
1 (or analytic) if it is analytic as a

subset of X × X .

Examples

Fix L a countable relational language. Any countable
L-structure is viewed as an element of XL =

∏
R∈L 2N

a(R)

M vL N
def⇐⇒ ∃h : M −→ N embedding.

If X is a Polish space and G is a Polish group such that
a : G y X is a Borel action,

x EX
G y

def⇐⇒ ∃g such that a(g , x) = y .
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Σ1
1 completeness

Definition

An equivalence relation E is Σ1
1-complete if and only if F ≤B E ,

for every Σ1
1 equivalence relation F .

Definition

A quasi-order Q is Σ1
1-complete if and only if P ≤B Q, for every

Σ1
1 quasi-order P.

Example

isometry between separable Banach spaces,
(Ferenczi-Louveau-Rosendal 2009)
∼=G the topological isomorphism between Polish groups.
(Ferenczi-Louveau-Rosendal 2009)
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Σ1
1-complete quasi-orders

Examples

vGr the embeddability on countable graphs,
(Louveau-Rosendal 2005)

vC the continuous embeddability on compact metrizable
spaces,
(Louveau-Rosendal 2005)

vi the isometric embeddability on separable Banach spaces,
(Ferenczi-Louveau-Rosendal 2009)

vG the topological embeddability on Polish groups,
(Ferenczi-Louveau-Rosendal 2009)

vGp the embeddability on countable groups.
(Williams 2014)
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Invariant Universality

Definition

Let S be a Σ1
1 quasi-order and E a Σ1

1 equivalence subrelation of
S . We say that the pair (S ,E ) is invariantly universal
(or universal) if for every Σ1

1 quasi-order R there is a Borel
B ⊆ dom(S) such that:

B is invariant respect to E ,

S � B ∼B R.

(Q,E ) invariantly universal ⇒ Q è Σ1
1-complete.

6⇐
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Embeddability of countable groups

Theorem (Williams 2014)

vGp is Σ1
1-complete.

Theorem (C.-Motto Ros)

vGp is invariantly universal.
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The only known technique

There exists a Borel G ⊆ XGr such that vGr � G is Σ1
1-complete

and over G equality and isomorphism coincide.

Theorem (Camerlo-Marcone-Motto Ros 2013)

Let S be a Σ1
1 quasi-order on X and E ⊆ S a Σ1

1 equivalence
relation. Assume that there is a Borel f : G→ X such that:

vG ≤B S via f ,

=G ≤B E via f ,

there exists a standard Borel space Y and a Borel reduction g
of E to EY

H , for some Polish group H y Y , such that

Σ : G −→ F (H)

T 7−→ {h ∈ H : h · (g ◦ f (T )) = g ◦ f (T )} is Borel.

Then, (S ,E ) is invariantly universal.
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Embeddability between countable groups

Proof (sketch)

J. Williams defined a Borel function

XGr −→ XGp

T 7−→ GT .

Every GT satisfies some small cancellation properties, which
are used to prove that f is a reduction for both

vG ≤BvGp, =G ≤B
∼=Gp.
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Embeddability between countable groups

G XGp
S∞

f

Let S∞ be the Polish group of all permutations of N.

S∞ y XGp is continuous and ∼=Gp coincides with E
XGp

S∞
.

Σ(T ) ={h ∈ S∞ : jGp(h, id ◦ f (T )) = id ◦ f (T )} =

={h ∈ S∞ : h ∈ Aut(GT )}
One can prove that Σ : G→ F (S∞) is Borel.
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Embeddability between Polish groups

Theorem (Ferenczi-Louveau-Rosendal 2009)
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Theorem (C.-Motto Ros)

vG is invariantly universal.

By Uspenskij, every Polish group is homeomorphic to a closed
subgroup of Hom([0, 1]N).
Let G := F (Hom([0, 1]N)) with the Effros Borel structure.
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Embeddability between Polish groups

G

G

f

T (GT ,P(GT )) code of (GT ,P(GT )) in G

However, ran f ⊆ D = {F ∈ G : F is a discrete group}.

Lemma

D is Π1
1-complete.
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Embeddability between Polish groups

G f

G

D

ran f

Gr D is Σ1
1.

Let A be the ∼=G-saturation of ran f . That is,

A := {F ∈ G : ∃T ∈ G (F ∼=G f (T ))}.
A is Σ1

1. By the separation theorem for Σ1
1 equivalence rela-

tions, there is a Borel and ∼=G-invariant B ⊆ G such that

B ⊇ A and B ∩ (Gr D) = ∅.
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Embeddability of Polish groups

G B

XGp

f

g

Every group in B ⊆ D is a discrete Polish group, then we
define a Borel g : B → XGp such that g(f (T )) ∼= GT .
One can prove that he map

Σ : G −→ F (S∞)

T 7−→ {h ∈ S∞ : jGp(h, g ◦ f (T )) = g ◦ f (T )}
is Borel.
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Thank you!

K
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